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M A T H E M A T I C A L  M O D E L I N G  OF E X T E N S I O N  

OF AN I N H O M O G E N E O U S  E L A S T I C  C L O T H  

V .  D .  B o n d a r ' ,  S .  P .  M o l i n a ,  1 a n d  V .  V .  $ a d o v s k i i  I UDC 539.3,677.494 

We propose mathematical models for a knitted fabric in tension that can be used to calculate 
the strain of the cloth thread from the properties of the cloth and the loads applied to the cloth. 
Under simplifying assumptions, the problem is reduced to consideration of an elementary cell of 
the cloth that contains a thread loop. The loop is first modeled by a thread oval with point forces 
and then by a plate with a hole under distributed loads. In strength analysis, this allows one 
to use methods of elasticity theory. A number of hypotheses are used to establish the relation 
between the stress state of the thread oval and the corresponding state of the plate, which makes 
it possible to model the mechanical behavior of a thread in the material in a variety of forms. 
The theoretical relationships obtained are compared to the ezperimcntal data available in the 
literature. 

In the manufacture of textile materials from new types of raw materials and in the design of knitted 
articles meeting up-to-date requirements, there is a need to solve a wide class of problems, among which 
strength analysis plays an important role. Knowledge of the deformation-strength properties of starting 
materials allows one to choose an optimum material and to predict the behavior of articles during operation. 

Knitted fabrics form an important class of textile articles. They can be regarded as a discrete medium 
consisting of cells connected by loops or knots. These fabrics have been widely used in various applications. 
I)evelopment and improvement of methods for the strength analysis of these materials have been the subject 
of many theoretical and experimental studies [1-5]. 

In the present paper, using methods of continuum mechanics, we develop a mathematical model for a 
knitted fabric that establishes the relation among the strain of a thread in the fabric, the parameters of the 
fabric, and the load applied to it. This relation can be used, in particular, to obtain tensile diagrams, which 
are used in designing textile articles. 

1. A knitted fabric has a complicated structure. Its mechanical properties are determined by various 
qualitative and quanti tat ive factors. In the fabric structure, elementary cells having the shape of loops can 
be arranged in one or several layers and, generally, can have different shapes and orientations. Moreover, the 
elementary cells can themselves change with changes in the length of the loop, thickness of the thread, etc. 
Neglecting secondary factors, we adopt the following assumptions: 

- -  a knitted fabric is a regular system of cells (loops) arranged in one layer (Fig. 1); 
- -  all loops have the same dimensions and shape, and, within an elementary link, the thread has the 

same thickness and deformation-strength properties; 
- -  the lateral surfaces of the fabric are subjected to in-plane loads of constant intensity and the faces 

are free of tractions; 
- -  the flexural rigidity of the thread, the friction at the spots of contact of elementary links, and the 

weight of the fabric are neglected; 
- -  the deformation is quasistatic and proceeds at constant humidity and temperature. 
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Fig. 1. Structure of a knitted fabric. 
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Fig. 2 

Fig. 2. Structure of a typical cell. 
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Fig. 4 

Fig. 3. Modeling of a loop by an oval with point loads. 

Fig. 4. Modeling of a loop by a plate with distributed loads. 

We consider a rectangular sheet of a knitted fabric with width d, length l, and thickness h (l ,-~ d and 
h << d). The cloth is stretched in its plane by a longitudinal force G and a transverse force F (Fig. 1). From 
the specified loads and the parameters of the cloth, we determine the tensile stress in the thread in a state of 
equilibrium and establish the relation between the stress and strain of the thread. 

The sheet of the material is a system of elementary links, whose interaction is determined by the 
applied loads, the fabric structure, and the properties of the thread. We divide the sheet into w longitudinal 
and v transverse strips with dimensions D (loop width) and L (height of the loop row), respectively: 

D = d / w ,  L = I/v.  (1) 

We consider a typical elementary cell containing a thread loop (Fig. 2). 
At the first stage of modeling, modifying the results of [1], we assume that the thread loop is an oval 

with outer F and inner F1 contours loaded by lateral point forces: the normal reactions of the links of the 
previous loop row Qu and the next loop row and the reactions of the discarded parts of the loop considered 
P~ (Fig. 3). 

It should be noted that the shape of the oval, the forces acting on the oval, and the points at which 
these forces are applied are not known in advance. Moreover, in quasistatical extension of the sheet, the points 
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of contact of neighboring links and the points of application of the forces are shifted, and this complicates 
analysis. 

To overcome the above-mentioned difficulties and develop a method for determining tension in the 
thread, we describe the second stage of modeling, at which we replace the discrete distribution of mass in 
the cell (along the thread loop) and the discrete distribution of forces on the oval (at different points of the 
lateral surface) by continuous distributions. 

We model the thread oval by a material layer, i.e., a plate of the same mass with a hole, whose inner 
contour coincides with the inner contour of the oval and whose outer contour coincides with the contour 
of the rectangle that bounds the cell (Fig. 4). The discrete load is modeled by an equivalent distributed 
contour load of constant intensity. The forces that are internal with respect to the oval Qv are modeled 
by distributed normal load q acting on the hole contour in the plate. The external forces P~ are replaced 
by equivalent distributed normal loads P ~  and P~y acting on the longitudinal and transverse sides of the 
rectangle, respectively, where x and y are Cartesian axes (Fig. 4). 

The unknown contour load q is found after the stresses in the plate are determined. The peripheral 
loads P ~  and P~y can be found from the loads applied at the sheet and from the geometric parameters of 
the sheet. Indeed, the forces on the sides of the rectangular cell are given by the relations 

whence, 

P ~ L h  = F / v ,  

with allowance for (1), the desired loads are 

P ~  = F/ (h l ) ,  

P~Dh = G/w, 

P ~  = G/(hd) .  (2) 

In what follows, we assume that the stress state of the thread oval is determined by stresses in the plate 
and is expressed in terms of the stresses using a certain hypothesis. Thus, strength analysis for the thread 
loop reduces to analysis for a plate with a hole (treated as an infinite plane with a hole) subjected to normal 
contour and peripheral loads, for which methods of elasticity theory can be used. 

2. In accordance with the initial assumptions, for a typical element of the sheet, body forces are absent, 
the faces are free of stresses, and the toad on the lateral surface is parallel to its plane. Consequently, both 
the element and the modeling plate are under the generalized plane stresses described by the two-dimensional 
elastic problem [6]. 

Assuming that the applied loads cause small strains of the thread and the stress state of the thread 
loop is uniform, we calculate the stresses in the plate with a hole using the linear thcory of elasticity and 
assuming a full-strength hole contour. 

In this theory, the two-dimensional static problem reduces to equations of equilibrium, Hooke's law, 
and strain-displacement relations. In the absence of body forces, these relations in the Cartesian coordinates 
Zl = x and x2 = y (01 = Oxl, 02 -- Ox2) have the form [6] 

O~P~ z = O, P,,Z = ~o~,~a6,~Z + 2#e,~Z, 2e,~ = Oc, U z + O~uc,, (3) 

A0 = + 2 , )  ( ~ , / 3 ,  cr = 1, 2).  

Here ~Z is the Kronecker symbol,/~ and # are the Lam6 coefficients of elasticity, and u~, ~Z, and Pail are 
components of displacements, strains, and stresses, respectively, which are averaged across the thickness of 
the plate and are functions of the Xl and x2 coordinates: 

hi2 1/ 
= X x3) d 3, 

-h/2 

h/2 h/2 

= e  (xl, x2, z3) d 3, = x3) d 3. 
-hi2 -a/2 

Here summation is performed over repeated indices [the stresses P13 and P23 are small in comparison with 
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Pll,  P12, and P22, P33 = 0, and the strain e3z is expressed in terms of ell and ~22 by the formula ~33 = 

--/~(~11 "[- s  )~ + 2/t)].  
A distinguishing feature of a full-strength contour is that the stress concentration at each of its point 

is the same. This contour loses strength simultaneously at all points, and this occurs as a rule at large loads. 
In the case considered, the following boundary  conditions correspond to the full-strength contour: 

P n  = P ~ ,  P 2 2 = P ~ ,  P12 = 0  on ~ ;  (4) 

p r , = P , m = q  = c o n s t ,  Pt = P n t = 0 ,  P t t = a = c o n s t  on F, q = -kcr  (0 < k < 1). (5) 

Here pn and pt and Pnn, Pnt ,  and Ptt  are components of the stress vector and tensor, respectively, in the 
natural axes of the contour F (normal n and tangent t) (Fig. 4). Here we assume that the stress q is part  of 
the stress a and has the opposite sign. The values of P ~ ,  P~v, k A, and # in (3)-(5) are specified and the 
constants q and or, the contour shape, and the stresses are to be determined. 

Relations (3) lead to the equations of equilibrium and the compatibility equation in stresses O~Pa~ = 0 

and (011 + 022)(Pll --}- P22) =- 0 (or, ~ = 1, 2). In the complex variables, z 1 = z -..= x + iy  and z 2 = 2 = x - iy  

(Oz = O/Oz and 0z = 0 / 0 2 ) ,  these equations have the form 

OzP al + O~.P 12 = O, Oz~.P 12 = 0. (6) 

Here P~Z are the complex components of stresses, which are related to the Cartesian components by the 
transformation formulas P ~  = P a r ( O z ~ / O x a ) ( O z ~ / O x r )  as follows: 

p l a  = p22 = P~x - Pry + 2iP~y, p12 = p21 = Pz~ + Pyv" 

The general solution of Eqs. (6) is expressed in terms of the complex potentials O(z) and ~(z)  by 
Kolosov's formulas [7]: 

p l l  =/522 = -2 [ z~ ' (2 )  + ~(2)], p12 = p21 = 2[O(z) + ~(2)]. (7) 

In the infinite region S - -  the exterior of the hole in the plate - -  stresses should be single-valued and 
bounded. These requirements imply that  the potentials have the form 

Oo 

O(z )  = A + y ~  A k z  - k ,  q t (z)  = B + y ~  B kz  - k ,  (8) 
k=l  k=l  

where the constants A and B can be considered real; they are expressed in terms of the peripheral loads (4): 

m = ( P ~  + P ~ ) / 4 ,  B = ( P ~  - P ~ ) / 2 .  (9) 

The contour conditions (5) imply boundary-value problems for the potentials and the equation of 
the hole contour. Regarding the natural  axes n and t on the hole contour as the Cartesian axes x ~ and yt 
rotated through angle a about the z and y axes (Fig. 4) and introducing, in addition to z and 2, the complex 
coordinates z ~ = x ~ + iy t and 2 ~ = x ~ - iy  ~, we obtain 

z t l  = Z t ~ z l e - i a ,  Zt2 = y t = z 2 e i a .  

Consequently, the complex stresses p~aB and p a r  in the corresponding variables are related to one another 
by the transformation formulas p , ~ a  = p.~(Oz,~/Oz~)(Oz,a/Oz~): 

Pz'z' + Py'v' = pt l2  = p12, Pz'z '  - Pv'y' + 2iPz'v '  = p t l l  = plle-2ic~ on F. 

The angle a can be found from the equation of the contour z = z ( s )  and 2 = 2(s). Indeed, the unit vector 
tangent to the contour is given by the formula d z / d s  = e i(~/2+a), whence the desired angle is obtained in the 
form e -2i~ = - d 2 / d z  on F. Thus, the relation between the natural and complex components of stresses on 
the contour (with allowance for the coincidence of the axes x r = n and y~ = t) is given by the formulas 

d2 pl l  
Pnn + Ptt = P12,  Pnn -- Ptt + 2 i P , ,  = --~ZZ on F. 
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Finally, subst i tut ion of stresses (7) and the boundary values (5) into the last equations leads to the following 
boundary-value problems for the potentials and the problem for the equation of the contour: 

dz[24p, (z )+~(z)]  = q - c r  on r .  (10) 2[@(z) + ~(2)] = q + cr, 2 

To solve these problems, we map conformally the exterior of the hole S onto the exterior S' of a circle with 
unit  radius on an auxiliary plane ~ (with correspondence of infinitely remote points) using the holomorphic 
function 

oo 

z=w(()=c(+wo(~), c=e, wo(()=y~ckC -k, (=re i~ (11) 
k = 0  

The potentials (8) are then functions of the variable (: 
oo oo 

r = a + ~ ak( -k ,  ~ ( ( )  = B + ~ bk( -k ,  (12) 
k = l  k = l  

and the stresses (7) are calculated from the formulas 

p l l  = 1322 = --2 w(<') ~ + ~(~) = 2[r  + r (13) 

On the boundary F' of the unit  circle I([ = 1, we have 

= e iO, ~ = e -iO, 

dz = w'(~) d(  = i(w'(~) dO, d2 = -i~tb'(~) dO, 

Therefore, the boundary-value problems (10) is written as 

2[@(~') + ~(~)] = q + r on 

= 11 . 

dz w'(() 
_ 

F'; (14) 

2~'2[tb(~)~'(() + w'(~')~(~')] = (g - q)tb'(~) on F'. (15) 

From (12) and (14) it follows that  the analytic function ~( ( )  is bounded at infinity and its real part  is 
constant on the unit  circle. These conditions are satisfied by setting the function constant everywhere in the 
region S t (and equal to its value at infinity): 

r = A = ( P ~  + P~v)/4. (16) 

Then,  condition (14) defines the desired stress r [and, with allowance for (5), the load q] in terms of the 
specified quantities: 

cr = 4A/(1 - k), q = - 4 a k / ( 1  - k). (17) 

From (17) it follows that  c~ > 0 and q < 0, i.e., the contour of the hole is stretched and subjected to an 
internal pressure. 

By virtue of (16) and (17), condition (15) is simplified: 

(2w'(()kO(~') = (2A - q)tb'(~), [(t = 1. 

Using analytic continuation,  we write this condition in the form of a functional equation for the exterior of 
the circle: 

( 2w ' ( ( )~ ( ( )  = Htb ' (1/ ( ) ,  ( E S', H = 2A - q = 2A 1 +___~k (18) 
1 - k  

and employ it to determine the functions w(() and tl/((). 
We seek the function w0(~) in the mapping (11) in the form of a polynomial of order 21 + 1 in odd 

l 
powers of the argument  with real coefficients: w0(() = ~ C2k+1~ "-(2k+l) and C'2k+1 = C2k+1; the mapping 

k = 0  

983 



and its derivatives have the form 
l l 

w(r  = c r  + c2k+lr  -(2k+1), w'(r  = c - E ( 2 k  + 1 ) c 2 k + l r  -(2k+2), 
k=o k=o (19) 

I 
t~'(1/~) = C - y~(2k  + 1)~ 2k+2. 

k=0 

Using (12) and (19), we infer that the left and right sides of Eq. (18) have the following orders at 
infinity: 

(2w'(()~(~) = O(~2), H~2'(1/~) = O(~2/+2), 

which coincide for l = 0. Consequently, the mapping (19) is determined by the following two-term expression 
containing two real parameters: 

z = w ( O  = n(~ + m l O  , ,~ = C, m = C, IC.  (20) 

The mapping allows us to determine the shape of the hole in the plate and, consequently, the shape 
of the oval. Indeed, according to the chosen mapping, the full-strength contour is the image of a unit circle. 
Setting ~ = e ie for points on the circumference in (20), we obtain the following equation of full-strength 
contour: 

x = a c o s O ,  y = b s i n O ,  a = n ( l  + m ) ,  b = n ( 1 - m ) ,  
(21) 

0 < n = ( a + b ) / 2 <  (xD, - 1  < r n = ( a - b ) / ( a W b )  < 1. 

According to (21), the full-strength contour is an ellipse with semiaxes a and b. The center of the 
ellipse is at the coordinate origin, and the symmetry  axes coincide with the Cartesian axes; the parameter m 
characterizes the shape of the ellipse, and the parameter n characterizes its dimensions. 

By virtue of (20), the functional equation (18) defines the second potential: 

1 - mff 2 
= - -  (22) 

q/(~') H if2 _ m 

For the potentials (16) and (22) and the mapping (20), the following relations for the stresses (13) 
hold: 

p n  = p22 = 2H m~2 - 1 p12 = 4A. (23) 
~2  _ m 

From (23) in the limit ~ ---. ec, we obtain the equality P ~  = 2 m H ,  which, with allowance for (4), (9), 
and (18), defines the parameter m as a function of the specified quantities 

m = - s / g  = X(1 k)/(1 + k), X (p~o~ ,~ ~ - = - P~y ) / ( P ~  + Pyy ). ( 2 4 )  

Thus, of the two parameters m and n in the mapping (20), the first parameter  is determined by the 
applied load and the second parameter remains constant, which implies the existence of a one-parameter 
family of similar ellipses. (This result was obtained in [8, 9] by different methods.)  An ellipse from this family 
can be determined by specifying, for instance, one of its semiaxes. It follows from (24) that, for fixed peripheral 
loads, this formula gives an unambiguous relation between m and k, i.e., between the shape of the hole and 
the coefficient of proportionality of the contour stresses. 

By virtue of (20), the polar coordinates r and 0 in the plane of the unit circle correspond to the 
elliptic coordinates in the plane of the plate: the circumferences r = const correspond to ellipses and the 
radials 0 = const to hyperbolas. The physical components of stresses in these coordinates P~ ,  Pro and Poo 
are expressed in terms of the complex components and the mapping by the formulas [10] 

Pr~ -- PO0 + 2iPro - ~ ~'(~) p i i ,  Prr + 19oo - p12 ;V-(-6 
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Using the mapping (20) and the stress relations (23), we find from the last formulas that the components 
and linear invariant of stresses in the plate in elliptic coordinates have the form 

P ~ = 2 A + H  m ( r 4 + l ) c ~  I = P T r + P o o  = 4 A ,  (25) 
r 4 + m 2 - 2mr 2 cos 20 ' 

m(r  4 - 1) sin 20 
Poo = 2A - H re(r4 d- 1) cos 20 - (1 + m2)r 2 Pro = - g  r4 q- m2 2mr 2 cos 20 

r 4 + m 2 - 2mr 2 cos 20 ' - " 

Thus, the stresses at a typical point of the plate depend on its coordinates, the applied load, and the 
shape of the hole; the stress invariant is constant everywhere in the plate. To determine the relation between 
the postulated uniform stresses in the oval and the variable stresses in the plate, we average the stresses over 

both coordinates. 
We average the stresses over the variable R = r 2, which corresponds to the width of the transformed 

oval, in the infinite interval 1 ~< R ~ oo using the formula 

R 

P*(0) = R--*~lim (RI~_ I f P (R ,O)dR) .  
1 

To this end, we write equalities (25) in the form 

PT~ = 2 A - B c o s 2 0 + k l ,  P o o = 2 A + B c o s 2 0 + k 2 ,  Pro = B s i n 2 0 + / c a ,  I = 4 A ,  (26) 

where k~ = H ( a ~ R  +/3a)/(R 2 + bR+ c) (~r = 1, 2, and 3). Here al  = - (1  - m 2 cos 40),/31 = m(1 - m 2) cos 20, 
R = 7 "2, a2 = 1 - m 2 cos 40,/32 = - m ( 1  - m 2) cos 20, b = - 2 m  cos 20, a3 = - m  2 sin 40,/33 = rn(1 + m 2) sin 20, 
and c = rn 2. We note that the discriminant 7 of the quadratic trinomial in the denominator in the expression 
for ka is negative: 

3 ' = b 2 - 4 c = - 4 m  2sin 2 2 0 < 0 .  

The value of the function R averaged over k~, in the finite interval (1, R) calculated in accordance with 

Ill] for 3' < 0 is given by the expression 

R R 

R 1 - 1 R 2 + bR + c 
1 1 

- in + arctan arctan 
- i l + b + c 4=-5  ) i 

Passing to the limit R --+ oo and evaluating the indeterminate form, we infer that the average value of 

the function in the infinite interval vanishes: 

k;(O) = lim 1 ka(R, O) d = H tim R2 + 2 = 0. (27) 
R--.~ n--oo + bR + c (2R + b) 2 - 3' 

1 

In view of (27), the stresses (26) (which can be assumed to be determined on the hole contour) averaged over 

R have the form 

P~*r = 2 A - B c ~  P~o = 2 A + B c o s 2 0 ,  P~o=Bs in20 ,  I * = 4 A .  (28) 

The stresses are functions of 0 and do not depend on the shape of the hole. 
Subsequent averaging of the stresses (28) over the variable 0, i.e., along the length of the oval, using 

the formula 
27r 

p** = __1 i P,(O)dO 
27r 

0 

985 



leads to the uni form field of average stresses with zero shear stress: 

P * * = 2 A ,  P ~ = 2 A ,  P*0*=0,  I * * = 4 A .  (29) 

We note tha t  on the contour of the hole (r = 1) the nonaveraged stresses in the elliptic coordinates 
and their invariant (25) are constant  together with the average stresses: 

P)~ = 2 A -  H = q = - k a ,  P~o = 2A + H = (r, P1 o = 0, 
(30) 

11 = Fir + Pd0 = 4A  = (1 - 

[a is given by formula  (17)]. Here and below, the values corresponding to r = 1 are denoted by the superscript 
1. 

Thus, the  stress field of the plate can be characterized by the stress invariant (25), or the average 
stresses (29), or the  contour  stresses (30). Using Hooke's law for a plate, we find the relation between the 
above-mentioned stresses and the corresponding strains. 

We write Hooke's  law in the elliptic coordinates as 

Prr = A0J + 2#Err, PO0 = A0J + 2/zE0o, Pro = 2#Er0, (31) 

whence 
I = 2(A0 +/~)J,  I = Prr + POe, J = Err + E00. (32) 

** ** and ** and their invariant J**. The average stresses (29) correspond to the strains and err, r ErO 
Averaging the law (31) over both coordinates leads to the  following relations between the average quantities: 

Pr*r* = AoJ** + 2#E**, Po*~ = AoJ** + 2/zr Pr*e* = 2/z~r;, I** = 2(X0 + #)J**. (33) 

From equali t ies (29) and (33) it follows that  the average shear strain (er~ = 0) is absent and the average 
invariants are proport ional .  The  same equalities imply the relations 2P~*r* = 2Pe*~ = I** and 2E** = 2E~ = J**, 
which, together wi th  the relation for the invariants (33), establishes the proportionality between corresponding 
average components  of stresses and strains 

P;7 = 2(A0 +/~)E**, P0*~ = 2(A0 + / t ) e ; ; .  (34) 

Thus, for the diagonal  components  (34), the coefficients of proportionality are identical and equal to those 
between the invariants (32). 

1 E~0, I and invariant j1 of the contour The contour  stresses (30) correspond to the components  r Ere 
strains. They are related by equalities (31) and (32) wri t ten for r = 1: 

P;~ = )~0J 1 "4- 2#~lrr, P~O = ~0 J1 + 2/zero, P~o = 21zeX, o; (35) 

I1 ----" 2(A0 + #) J l ,  I1 = Fir + P~o, gl  = er +e~0. (36) 

Relations (30), (35), and (36) imply that  the shear strain vanishes on the contour (e~0 = 0), the stress 
and strain invariants are proport ional  to each other [equality (36)], and the diagonal components of stresses 
and strains are proport ional :  

P,~ = - k p l o ,  ((1 + k)A0 + 2#)erlr = --((1 + k)A0 + 2k#)e~,. 

From these equalities, we obtain the following expression of the invariants in terms of the diagonal components:  

11 = 1 - k  k p 1  = (1 - k)Pdo, j1 = 

Subst i tut ing (37) into (36), we obtain 

pr l  4k#(A0 + #) 1 
= Err , (1 + k)),o + 2k~ 

2 # ( 1 - k )  , = 2 # ( 1 - k )  
(1 + k))~0 + 2]c# Err (1 Tk-)~0 + 2# E~~ (37) 

= 4,( 0 + , )  4 0 .  (38) 
(1 + k)A0 + 

Relations (38) are similar to relations (34) and differ from the latter onty by the coefficients. The  
coefficients in (34) are the  same and depend only on the  elastic constants, whereas the coefficients in (38) 
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are different and contain the parameter  k. This parameter ,  in view of (24), can be expressed in terms of the 
parameter  m: k = ( ) / -  m) / (X + rn); therefore, the coefficients in (38) take into account not only the elastic 
properties but also the shape of the hole. 

a. The  adopted assumption of uniform stresses in the thread and the introduced characteristics of the 
stress field in the plate, which are independent  of the point,  make it possible to model the mechanical behavior 
of the thread in tension using one of the following assumptions. 

The  thread oval has small thickness and, therefore, the stress r and the strain e in it are normal 
components  of the stress and strain tensors at the sites that  are orthogonal to the oval axis. This axis is close 
to the inner boundary of the oval, which is the 0 axis of the elliptic coordinates in the plate. Consequently, the 
quantities r and e at the above-mentioned sites correspond to the quantities Poo and e00 on the hole contour 
of the plate. Therefore, it can be assumed that  the measures of the stress strain state of the oval r* and e* are 
determined by the corresponding averaged measures of the plate P~*0* and e~ ,  and the relation (34) between 
these quantit ies gives the following law of mechanical behavior of the thread (the first model): 

* * r* ** * ** a*  2(A0 + # ) .  (39)  r* = a e , = Pdo , e : Soo , : 

Alternatively, the characteristics of the oval v 1 and e I are determined by the contour quantities P~o and ~10 
in the plate, and, hence, the behavior  of the thread is expressed by relation (38) (second model): 

7"1 ----- c ~ l e l ,  7"1 = P~o, e 1 = e~o, a '  = 4#(A0 + #)/((1 + k)Ao + 2#). (40) 

One can also assume tha t  the  stress and strain of the oval T o and e ~ are determined by the invariants 
I and J of the stress and strain fields in the plate, and the behavior of the thread is described by relation 
(31) (third model): 

~ .0=a0e0 ,  r ~  e ~  a ~  (41) 

Models (39)-(41) have a similar structure. The  coefficients of proportionali ty in them possess the 
properties a ~ = a* ~ a l ;  therefore, relations (39) and (41) are identical and relations (39) and (40) are 
alternative. By virtue of this, we shall consider only models (39) and (40). The  property of these coefficients 
a * / a  1 = 1 + ~0(1 + k)/(2#) > 1 shows that ,  in comparison with (40), the law (39) gives more rapid growth 
of stresses. 

Each of models (39) and (40) allows one to express the strain of the thread in terms of specified 
quantities and quantities de te rmined  experimentally. Indeed, in these models, the stresses are known and, in 
accordance with (2), (9), (17), (29), and (30), they are given by the formulas 

r* = P ; ;  = 2 A  = ( P ~  + P ~ ) / 2  = ( F d  + a l ) / ( 2 h l d ) ,  

0 0  r '  = Pt~o = 4A(1 - k) = (p;o~ + P;y) / (1  - k) = ( F d +  G I ) / ( ( 1  - k ) h l d ) .  

Using the relations between different elastic constants [6, 12] 

= Eul((l - 2u)(I + u)), # = EI(2(I + u)), 

where E is the Young's modulus  and u is the Poisson's ratio (determined experimentally),  it is possible 
to express the coefficients of proport ional i ty  in the models considered in the form a* = E / ( 1  - u) and 
a 1 = E / ( 1  + ku) .  Finally, the a l ternat ive laws of behavior of the tread (39) and (40) become 

1 -  u F d  + GI e l _  l + kL, F d  + Gl  
e* = 2 E  h ld  ' E(1 - k) h ld  (42) 

Thus,  according to the mathemat ica l  models proposed, the strain of the thread is determined by the 
geometric parameters of the cloth, the applied loads, and the strength properties of the material. Each of 
formulas (42) enables one to calculate the strain of the thread from specified quantit ies and to plot tensile 
diagrams. 

It has been found experimental ly  [4, pp. 107-110] that,  for biaxial extension of smooth weaved or 
knitted materials, they s t rengthen  along loop rows and columns. Experimental  curves of load f i  (per unit 
width) versus strain ~i were approximated  by the nonlinear equations f i  = ci~7 (i = 1, 2), where ci and w 
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Fig. 5. Tensile curves for the yarn and knitted fabric: (a) cotton; (b) wool; curves 1 
and 3 refer to the first and second models, respectively, and curves 3 to experiment. 

are constants. For small strains, these relations admit linearization (based on the equalities r ~ ei) fi = ciei 
(i = 1, 2) which is in good agreement with the experiment. A comparison of these functions with relations 
(39) and (40) shows that they are of the same type. Thus, for small strains, theoretical relations are similar 
to linearized experimental relations. 

A comparison between theoretical and experimental results is shown in Fig. 5, where curves 3 refer to 
experimental results on extension of cotton and woolen yarn and theoretical straight lines 1 and 2 obtained 
using models 1 and 2, respectively, for extension of threads in knitted fabrics made of the same materials. 
For the yarn, the experimental data of [3, p. 132] were used; calculations of thread tension in the fabrics were 
performed using the strength characteristics given in [3, pp. 173 and 209]: 

- -  for cotton, E = 135 �9 107 Pa, u = 0.3, k = 0.1, a* = 193 �9 107 Pa, and a 1 = 131 �9 107 Pa; 
- - f o r  wool, E = 1 7 0 - 1 0 7  Pa, u=0 .42 ,  k = 0 . 1 ,  a* = 2 9 3 . 1 0 7 P a , a n d a l  =163.107 Pa. 
Analysis of the results shows that the theoretical curves are sufficiently close to the experimental 

curves. The first model gives the upper bound of the experimental results and the second model gives the 
lower bound. 
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